Processing math: 6%

EXAMPLE 3Using the ϵ-δ Definition of a Limit

Prove: lim.

Solution Given any \epsilon >0, we must show there is a number \delta >0 so that \begin{equation*} \hbox{whenever }\quad 0 \lt \vert x-2\vert \lt \delta \qquad \hbox{ then } \vert x^{2}-4\vert \lt \epsilon \end{equation*}

To establish a connection between \vert x^{2}-4\vert and \vert x-2\vert , we write \left\vert x^{2}-4\right\vert as \begin{equation*} \left\vert x^{2}-4\right\vert =\left\vert \,(x+2)(x-2)\right\vert =\left\vert x+2\right\vert \cdot \vert x-2\vert \end{equation*}

Now, if we can find a number K for which \left\vert x+2\right\vert \lt K, then we can choose \delta =\dfrac{\epsilon }{K}. To find K, we restrict x to some interval centered at 2. For example, suppose the distance between x and 2 is less than 1. Then \begin{equation*} \begin{array}{rcl@{\qquad}l} \\[-5pc] &&\vert x-2\vert \lt 1 & \\[3pt] -1&\lt&x-2 \lt 1 & \\[3pt] 1&\lt&x \lt 3 & {\color{#0066A7}{\hbox{Simplify.}}} \\ 1+2&\lt&x+2 \lt 3+2 & {\color{#0066A7}{\hbox{Add 2 to each part. }}} \\ 3&\lt&x+2 \lt 5 & \end{array} \end{equation*}

134

In particular, we have \vert x+2\vert \lt 5. It follows that whenever \vert x-2\vert \lt 1, \begin{equation*} \vert x^{2}-4\vert =\left\vert x+2\right\vert \cdot \vert x-2\vert \lt 5\,\vert x-2\vert \hbox{ } \end{equation*}

If \vert x-2\vert \lt \delta =\dfrac{\epsilon }{5}, then \left\vert \hbox{ }x^{2}-4\right\vert \lt 5\,\vert x-2\vert \lt 5\cdot \dfrac{\epsilon }{5}=\epsilon , as desired.

But before choosing \delta =\dfrac{\epsilon }{5}, we must remember that there are two constraints on \vert x-2\vert . Namely, \begin{equation*} \vert x-2\vert \lt 1\qquad \hbox{and}\qquad \vert x-2\vert \lt \dfrac{\epsilon }{5} \end{equation*}

To ensure that both inequalities are satisfied, we select \delta to be the smaller of the numbers 1 and \dfrac{\epsilon }{5}, abbreviated as \delta =\min \left\{ 1,\dfrac{\epsilon }{5}\right\} . Now, \hbox{whenever } \vert x-2\vert \lt \delta =\min \left\{ 1,\dfrac{\epsilon }{5}\right\} \hbox{ then } \vert x^{2}-4\vert \lt \epsilon

proving \lim\limits_{x\rightarrow 2}x^{2}=4.