Prove that if \(\lim\limits_{x\rightarrow c}f(x)\gt0\), then there is an open interval around \(c\), for which \(f(x)\gt0\) everywhere in the interval except possibly at \(c\).
If \(\epsilon =\dfrac{L}{2}\), then from the definition of limit, there is a \(\delta \gt0\) so that \begin{equation*} \hbox{whenever } 0\lt\vert x-c\vert \lt\delta\quad \hbox{ then } \vert f(x)-L\vert \lt\dfrac{L}{2}\quad \hbox{ or equivalently, } \dfrac{L}{2}\lt f(x)\lt\dfrac{3L}{2} \end{equation*} Since \(\dfrac{L}{2}\gt0\), the last statement proves our assertion that \(f(x)\gt0\) for all \(x\) in the interval \((c-\delta ,c+\delta)\).