Processing math: 11%

EXAMPLE 7Using the ϵ-δ Definition of a Limit

Prove that if lim, then there is an open interval around c, for which f(x)\gt0 everywhere in the interval except possibly at c.

Solution Suppose \lim\limits_{x\rightarrow c}f(x)=L\gt0. Then given any \epsilon \gt0, there is a \delta \gt0 so that \begin{equation*} \hbox{whenever }\quad 0\lt\vert x-c\vert \lt\delta \qquad \hbox{ then}\quad \vert f(x)-L\vert \lt\epsilon \ \end{equation*}

If \epsilon =\dfrac{L}{2}, then from the definition of limit, there is a \delta \gt0 so that \begin{equation*} \hbox{whenever } 0\lt\vert x-c\vert \lt\delta\quad \hbox{ then } \vert f(x)-L\vert \lt\dfrac{L}{2}\quad \hbox{ or equivalently, } \dfrac{L}{2}\lt f(x)\lt\dfrac{3L}{2} \end{equation*} Since \dfrac{L}{2}\gt0, the last statement proves our assertion that f(x)\gt0 for all x in the interval (c-\delta ,c+\delta).