Investigate \(\lim\limits_{x\rightarrow 2}( 2x+5)\) using a table of numbers.
\(\underrightarrow{\hbox{numbers \(x\) slightly less than 2}}\) | \(\underleftarrow{\hbox{numbers \(x\) slightly greater than 2}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | 1.99 | 1.999 | 1.9999 | 1.99999 | \(\rightarrow\) | 2 | \(\leftarrow\) | 2.00001 | 2.0001 | 2.001 | 2.01 |
\(f(x) =2x+5\) | 8.98 | 8.998 | 8.9998 | 8.99998 | \(f(x)\) approaches 9 | 9.00002 | 9.0002 | 9.002 | 9.02 |
Table 1 suggests that the value of \(f(x)=2x+5\) can be made “as close as we please” to 9 by choosing \(x\) “sufficiently close” to 2. This suggests that \(\lim\limits_{x\rightarrow 2}( 2x+5) =9\).