Investigate \(\lim\limits_{x\rightarrow 0}\dfrac{e^{x}-1}{x}\) using a table of numbers.
We create Table 2, investigating the left-hand limit \(\lim\limits_{x\rightarrow 0^{-}}\dfrac{e^{x}-1}{x}\) and the right-hand limit \(\lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{x}-1}{x}\). First, we evaluate \(f\) at numbers less than 0, but close to zero, and then at numbers greater than 0, but close to zero.
\(\underrightarrow{x~\hbox{approaches 0 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 0 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | -0.01 | -0.001 | -0.0001 | -0.00001 | \(\rightarrow\) | 0 | \(\leftarrow\) | 0.00001 | 0.0001 | 0.001 | 0.01 |
\(f(x) =\dfrac{e^{x}-1}{x}\) | 0.995 | 0.9995 | 0.99995 | 0.999995 | \(f(x)\) approaches 1 | 1.000005 | 1.00005 | 1.0005 | 1.005 |
Table 2 suggests that \(\lim\limits_{x\rightarrow 0^{-}}\dfrac{e^{x}-1}{x}=1\) and \(\lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{x}-1}{x}=1\). This suggests \(\lim\limits_{x\rightarrow 0}\dfrac{e^{x}-1}{x}=1\).