Processing math: 0%

EXAMPLE 2Investigating a Limit Using a Table of Numbers

Investigate lim using a table of numbers.

Solution The domain of f(x)=\dfrac{e^{x}-1}{x} is \{x| x\neq 0 \}. So, f is defined everywhere in an open interval containing the number 0, except for 0.

We create Table 2, investigating the left-hand limit \lim\limits_{x\rightarrow 0^{-}}\dfrac{e^{x}-1}{x} and the right-hand limit \lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{x}-1}{x}. First, we evaluate f at numbers less than 0, but close to zero, and then at numbers greater than 0, but close to zero.

TABLE 2
\underrightarrow{x~\hbox{approaches 0 from the left}} \underleftarrow{x~\hbox{approaches 0 from the right}}
x -0.01 -0.001 -0.0001 -0.00001 \rightarrow 0 \leftarrow 0.00001 0.0001 0.001 0.01
f(x) =\dfrac{e^{x}-1}{x} 0.995 0.9995 0.99995 0.999995 f(x) approaches 1 1.000005 1.00005 1.0005 1.005

Table 2 suggests that \lim\limits_{x\rightarrow 0^{-}}\dfrac{e^{x}-1}{x}=1 and \lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{x}-1}{x}=1. This suggests \lim\limits_{x\rightarrow 0}\dfrac{e^{x}-1}{x}=1.