Investigate lim using a table of numbers.
Solution The domain of f(x)=\dfrac{e^{x}-1}{x} is \{x| x\neq 0 \}. So, f is defined everywhere in an open interval containing the number 0, except for 0.
We create Table 2, investigating the left-hand limit \lim\limits_{x\rightarrow 0^{-}}\dfrac{e^{x}-1}{x} and the right-hand limit \lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{x}-1}{x}. First, we evaluate f at numbers less than 0, but close to zero, and then at numbers greater than 0, but close to zero.
\underrightarrow{x~\hbox{approaches 0 from the left}} | \underleftarrow{x~\hbox{approaches 0 from the right}} | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
x | -0.01 | -0.001 | -0.0001 | -0.00001 | \rightarrow | 0 | \leftarrow | 0.00001 | 0.0001 | 0.001 | 0.01 |
f(x) =\dfrac{e^{x}-1}{x} | 0.995 | 0.9995 | 0.99995 | 0.999995 | f(x) approaches 1 | 1.000005 | 1.00005 | 1.0005 | 1.005 |
Table 2 suggests that \lim\limits_{x\rightarrow 0^{-}}\dfrac{e^{x}-1}{x}=1 and \lim\limits_{x\rightarrow 0^{+}}\dfrac{e^{x}-1}{x}=1. This suggests \lim\limits_{x\rightarrow 0}\dfrac{e^{x}-1}{x}=1.