Investigate \(\lim\limits_{x\rightarrow 0}\sin \dfrac{\pi}{x^{2}}\).
\(\underrightarrow{x~\hbox{approaches 0 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 0 from the right}}\) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(-\dfrac{1}{10}\) | \(-\dfrac{1}{100}\) | \(-\dfrac{1}{1000}\) | \(-\dfrac{1}{10{,}000}\) | \(\rightarrow\) | 0 | \(\leftarrow\) | \(\dfrac{1}{10,000}\) | \(\dfrac{1}{1000}\) | \(\dfrac{1}{100}\) | \(\dfrac{1}{10}\) |
\(f(x) =\sin \dfrac{\pi }{x^{2}}\) | 0 | 0 | 0 | 0 | \(f(x)\) approaches 0 | 0 | 0 | 0 | 0 |
The table suggests that \(\lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}}=0\). Now suppose we let \(x\) approach zero as follows:
\(\underrightarrow{x~\hbox{approaches 0 from the left}}\) | \(\underleftarrow{x~\hbox{approaches 0 from the right}}\) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(x\) | \(-\dfrac{2}{3}\) | \(-\dfrac{2}{5}\) | \(-\dfrac{2}{7}\) | \(-\dfrac{2}{9}\) | \(-\dfrac{2}{11}\) | \(\rightarrow\) | 0 | \(\leftarrow\) | \(\dfrac{2}{11}\) | \(\dfrac{2}{9}\) | \(\dfrac{2}{7}\) | \(\dfrac{2}{5}\) | \(\dfrac{2}{3}\) |
\(f(x) =\sin\dfrac{\pi}{x^{2}}\) | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | \(f(x)\) approaches 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 |
This table suggests that \(\lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}}=\dfrac{\sqrt{2}}{2}\approx 0.707\).
In fact, by carefully selecting \(x\), we can make \(f\) appear to approach any number in the interval \([-1, 1]\).
Now look at the graphs of \(f(x) =\sin \dfrac{\pi}{x^{2}}\) shown in Figure 15. In Figure 15(a), the choice of \(\lim\limits_{x\rightarrow0}\sin \dfrac{\pi }{x^{2}}=0\) seems reasonable. But in Figure 15(b), it appears that \(\lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}}=-\dfrac{1 }{2}\). Figure 15(c) illustrates that the graph of \(f\) oscillates rapidly as \(x\) approaches 0. This suggests that the value of \(f\) does not approach a single number, and that \(\lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}}\) does not exist.