Investigate lim.
Solution The domain of the function f(x)=\sin \dfrac{\pi }{x^{2}} is \{x|x\neq 0\}. Suppose we let x approach zero in the following way:
\underrightarrow{x~\hbox{approaches 0 from the left}} | \underleftarrow{x~\hbox{approaches 0 from the right}} | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
x | -\dfrac{1}{10} | -\dfrac{1}{100} | -\dfrac{1}{1000} | -\dfrac{1}{10{,}000} | \rightarrow | 0 | \leftarrow | \dfrac{1}{10,000} | \dfrac{1}{1000} | \dfrac{1}{100} | \dfrac{1}{10} |
f(x) =\sin \dfrac{\pi }{x^{2}} | 0 | 0 | 0 | 0 | f(x) approaches 0 | 0 | 0 | 0 | 0 |
The table suggests that \lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}}=0. Now suppose we let x approach zero as follows:
\underrightarrow{x~\hbox{approaches 0 from the left}} | \underleftarrow{x~\hbox{approaches 0 from the right}} | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x | -\dfrac{2}{3} | -\dfrac{2}{5} | -\dfrac{2}{7} | -\dfrac{2}{9} | -\dfrac{2}{11} | \rightarrow | 0 | \leftarrow | \dfrac{2}{11} | \dfrac{2}{9} | \dfrac{2}{7} | \dfrac{2}{5} | \dfrac{2}{3} |
f(x) =\sin\dfrac{\pi}{x^{2}} | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | f(x) approaches 0.707 | 0.707 | 0.707 | 0.707 | 0.707 | 0.707 |
This table suggests that \lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}}=\dfrac{\sqrt{2}}{2}\approx 0.707.
In fact, by carefully selecting x, we can make f appear to approach any number in the interval [-1, 1].
Now look at the graphs of f(x) =\sin \dfrac{\pi}{x^{2}} shown in Figure 15. In Figure 15(a), the choice of \lim\limits_{x\rightarrow0}\sin \dfrac{\pi }{x^{2}}=0 seems reasonable. But in Figure 15(b), it appears that \lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}}=-\dfrac{1 }{2}. Figure 15(c) illustrates that the graph of f oscillates rapidly as x approaches 0. This suggests that the value of f does not approach a single number, and that \lim\limits_{x\rightarrow 0}\sin \dfrac{\pi }{x^{2}} does not exist.