The limit properties are also true for one-sided limits.
\[ \begin{array}{rcl@{\qquad}l} \lim\limits_{x\rightarrow 1}[(2x)(x+4)] &=&\left[ \lim\limits_{\kern.5ptx\rightarrow 1}(2x)\right] \left[ \lim\limits_{\kern.5ptx\rightarrow 1}(x+4)\right] &{\color{#0066A7}{\hbox{Limit of a Product}}}\\ &=&\left[ 2\cdot \lim\limits_{x\rightarrow 1}x\right] \cdot \left[ \lim\limits_{\kern.5ptx\rightarrow 1}x+\lim\limits_{x\rightarrow 1}4\right] &{\color{#0066A7}{\hbox{Limit of a Constant Times a Function, Limit of a Sum}}}\\ &=&(2\cdot 1)\cdot (1+4)=10 & {\color{#0066A7}{\hbox{Use (2) and (1), and simplify.}}} \end{array} \]