Establish the formula \[\bbox[5px, border:1px solid black, #F9F7ED]{ \lim\limits_{\theta \rightarrow 0}\dfrac{\cos \theta -1}{\theta} = 0} \]
where \(\theta\) is measured in radians.
Now we find the limit. \[ \begin{eqnarray*} \lim_{\theta \rightarrow 0}\frac{\cos \theta -1}{\theta } &=&\lim_{\theta \rightarrow 0}\left[ \left( \frac{\sin \theta }{\theta } \right) \!\left( \frac{(-\sin \theta )}{\cos \theta +1}\right) \right] = \left[ \lim_{\theta \rightarrow 0}\frac{ \sin \theta }{\theta }\right]~ \!\left[ \lim_{\theta \rightarrow 0} \frac{ -\sin\theta}{\cos \theta +1} \right] \nonumber \\ &=& 1\,{\cdot}\,\dfrac{\lim\limits_{\theta \rightarrow 0}(-\sin \theta)}{\lim\limits_{\theta \rightarrow 0}(\cos\theta+1)} =\dfrac{0}{2} =0 \end{eqnarray*} \]