EXAMPLE 2Differentiating Trigonometric Functions
Find the derivative of each function:
- (a) f(x)=x2cosx
- (b) g(θ)=cosθ1−sinθ
- (c) F(t)=etcost
Solution
- (a) f′(x)=ddx(x2cosx)=x2ddxcosx+(ddxx2)(cosx)=x2(−sinx)+2xcosx=2xcosx−x2sinx
- (b) g′(θ)=ddθ(cosθ1−sinθ)=(ddθcosθ)(1−sinθ)−(cosθ)[ddθ(1−sinθ)](1−sinθ)2=−sinθ(1−sinθ)−cosθ(−cosθ)(1−sinθ)2=−sinθ+sin2θ+cos2θ(1−sinθ)2=−sinθ+1(1−sinθ)2=11−sinθ
- (c) F′(t)=ddt(etcost)=(ddtet)(cost)−et(ddtcost)cos2t=etcost−et(−sint)cos2t=et(cost+sint)cos2t