Processing math: 20%

EXAMPLE 6Identifying Where a Function Has No Derivative

Given the piecewise defined function f(x)={2x2+4ifx<1x2+1ifx1, determine if f (1) exists.

Solution We investigate the limit lim

If x < 1, then f(x)=-2x^{2}+4; if x ≥ 1, then f(x)=x^{2}+1. So, it is necessary to investigate the one-sided limits at 1. \begin{eqnarray*} \lim\limits_{x\rightarrow 1^{-}}\frac{f(x)-f(1)}{x-1}&=&\lim\limits_{x \rightarrow 1^{-}}\frac{(-2x^{2}+4)-2}{x-1} = \lim\limits_{x\rightarrow 1^{-}} \frac{-2(x^{2}-1)}{x-1}\\[5pt] &=&-2\lim\limits_{x\rightarrow 1^{-}}\frac{(x-1)(x+1)}{ x-1}=-2\lim\limits_{x\rightarrow 1^{-}}(x+1)=-4\\[5pt] \lim\limits_{x\rightarrow 1^{+}}\frac{f(x)-f(1)}{x-1}&=&\lim\limits_{x \rightarrow 1^{+}}\frac{(x^{2}+1)-2}{x-1} = \lim\limits_{x\rightarrow 1^{+}} \frac{(x-1)(x+1)}{x-1} = \lim\limits_{x\rightarrow 1^{+}}(x+1)=2 \end{eqnarray*} Since the one-sided limits are not equal, \lim\limits_{x\rightarrow 1} \dfrac{f( x) -f(1) }{x-1} does not exist, and so f^\prime (1) does not exist.