Differentiating the Reciprocal of a Function
- \(\dfrac{d}{dx}\!\left( \dfrac{1}{x^{2}+x}\right) {=} -\dfrac{\dfrac{d}{dx}( x^{2}+x) }{( x^{2}+x) ^{2}}=-\dfrac{2x+1}{( x^{2}+x) ^{2}}\\[-7pt] \hspace{3.7pc} \underset{\color{#0066A7}{\scriptsize \hbox{Use (1).}}}{\color{#0066A7}{\uparrow}}\)
- \(\dfrac{d}{dx}e^{-x}=\dfrac{d}{dx}\!\left( \dfrac{1}{e^{x}}\right) {=} -\dfrac{\dfrac{d }{dx}e^{x}}{( e^{x}) ^{2}}=-\dfrac{e^{x}}{e^{2x}}=-\dfrac{1}{e^{x} }=-e^{-x}\\[-6.4pt] \hspace{5.4pc}\underset{\color{#0066A7}{\scriptsize \hbox{Use (1).}}}{\color{#0066A7}{\uparrow}}\)