Find the Taylor Polynomial P7(x) for f(x)=sinx at 0.
Solution The derivatives of f(x)=sinx at 0 are f(x)=sinxf′(x)=cosxf′′(x)=−sinxf′′′(x)=−cosxf(0)=0f′(0)=1f′′(0)=0f′′′(0)=−1f(4)(x)=sinxf(5)(x)=cosxf(6)(x)=−sinxf(7)(x)=−cosxf(4)(0)=0f(5)(0)=1f(6)(0)=0f(7)(0)=−1
The Taylor Polynomial P7(x) for sinx at 0 is P7(x)=f(0)+f′(0)x+f′′(0)2!x2+f′′′(0)3!x3+⋯+f(7)(0)7!x7=x−x33!+x55!−x77!
Figure 18 shows the graph of P7 superimposed on the graph of y=sinx.