Processing math: 100%

EXAMPLE 1Differentiating a Composite Function

Find the derivative of:
(a) y=(x34x+1)100 (b) y=cos(3xπ4)

Solution(a) In the composite function y=(x34x+1)100, let u=x34x+1. Then y=u100. Now dydu and dudx are dydu=dduu100=100u99=u=x34x+1100(x34x+1)99

and dudx=ddx(x34x+1)=3x24

We use the Chain Rule to find dydx. dydx= Chain Ruledydududx=100(x34x+1)99(3x24)

(b) In the composite function y=cos(3xπ4), let u=3xπ4. Then y=cosu and dydu=dducosu=sinu=u=3xπ4sin(3xπ4)anddudx=ddx(3xπ4)=3

Now we use the Chain Rule. dydx=Chain Ruledydududx=sin(3xπ4)3=3sin(3xπ4)