Find the derivative of:
(a) y=(x3−4x+1)100 (b) y=cos(3x−π4)
Solution (a) In the composite function y=(x3−4x+1)100, let u=x3−4x+1. Then y=u100. Now dydu and dudx are dydu=dduu100=100u99=↑u=x3−4x+1100(x3−4x+1)99
and dudx=ddx(x3−4x+1)=3x2−4
We use the Chain Rule to find dydx. dydx=↑ Chain Ruledydu⋅dudx=100(x3−4x+1)99(3x2−4)
(b) In the composite function y=cos(3x−π4), let u=3x−π4. Then y=cosu and dydu=dducosu=−sinu=↑u=3x−π4−sin(3x−π4)anddudx=ddx(3x−π4)=3
Now we use the Chain Rule. dydx=↑Chain Ruledydu⋅dudx=−sin(3x−π4)⋅3=−3sin(3x−π4)