Find the derivative of:
(a) \(y=( x^{3}-4x+1) ^{100}\) \( \quad \) (b) \(y=\cos \left( 3x-\dfrac{\pi}{4}\right)\)
and \[ \begin{eqnarray*} \dfrac{du}{dx}=\dfrac{d}{dx}( x^{3}-4x+1) =3x^{2}-4 \end{eqnarray*} \]
We use the Chain Rule to find \(\dfrac{dy}{dx}.\) \[ \begin{eqnarray*} && \dfrac{dy}{dx}\underset{\underset {\color{#0066A7} {\hbox{ Chain Rule}}} {\color{#0066A7}{{\uparrow}}}}{=}\dfrac{dy}{du}\cdot \dfrac{du}{dx}=100( x^{3}-4x+1) ^{99}(3x^{2}-4)\\ \end{eqnarray*} \]
(b) In the composite function \(y=\cos \left( 3x-\dfrac{\pi }{4} \right)\), let \(u=3x-\dfrac{\pi }{4}.\) Then \(y=\cos u\) and \[ \begin{eqnarray*} && \dfrac{dy}{du}=\dfrac{d}{du}\cos u=-\sin u \underset{\underset{\color{#0066A7} {\hbox{\(u=3x-{\dfrac{\pi}{4}}\)}}}{\color{#0066A7}{{\uparrow}}}}{=} -\sin \left( 3x-\dfrac{\pi}{4}\right) \quad\hbox{and}\quad \dfrac{du}{dx}=\dfrac{d}{dx}\left( 3x-\dfrac{\pi }{4}\right) =3\\ \end{eqnarray*} \]
Now we use the Chain Rule. \[ \begin{eqnarray*} && \dfrac{dy}{dx}\underset{\underset{\color{#0066A7}{\hbox{Chain Rule}}}{\color{#0066A7}{{\uparrow}}}}{=}\dfrac{dy}{du}\cdot \dfrac{du}{dx}=-\!\sin\! \left(3x-\dfrac{\pi }{4}\right) \cdot 3=-3\sin \left(3x-\dfrac{\pi }{4}\right)\\ \end{eqnarray*} \]