Find y′ if:
(a) y=ex2−4 (b) y=sin(4ex)
Solution (a) For y=ex2−4, we let u=x2−4. Then y=eu and dydu=ddueu=eu=↑u=x2−4ex2−4anddudx=ddx(x2−4)=2x
200
Using the Chain Rule, we get y′=dydx=dydu⋅dudx=ex2−4⋅2x=2xex2−4
(b) For y=sin(4ex), we let u=4ex. Then y=sinu and dydu=ddusinu=cosu=↑u=4excos(4ex)anddudx=ddx(4ex)=4ex
Using the Chain Rule, we get y′=dydx=dydu⋅dudx=cos(4ex)⋅4ex=4excos(4ex)