Differentiating a Composite Function

Find \(y^\prime \) if:

(a) \(y=e^{x^{2}-4}\) \( \quad \) (b) \(y=\sin (4e^{x}) \)

Solution (a) For \(y=e^{x^{2}-4},\) we let \(u=x^{2}-4.\) Then \(y=e^{u}\) and \[ \begin{eqnarray*} && \dfrac{dy}{du}=\dfrac{d}{du}e^{u}=e^{u}\underset{\underset{\color{#0066A7}{{{\hbox{\(u=x^{2}-4\)}}}}} {\color{#0066A7}{\uparrow}}}{=}e^{x^{2}-4} \quad\hbox{and}\quad \dfrac{du}{dx}=\dfrac{d}{dx}( x^{2}-4) =2x\\ \end{eqnarray*} \]

200

Using the Chain Rule, we get \[ y^\prime =\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}=e^{x^{2}-4}\cdot 2x=2xe^{x^{2}-4} \]

(b) For \(y=\sin (4e^{x}) \), we let \(u=4e^{x}\). Then \(y=\sin u\) and \[ \begin{eqnarray*} && \dfrac{dy}{du}=\dfrac{d}{du}\sin u=\cos u \underset{\underset{\color{#0066A7}{{{\hbox{\(u=4e^{x}\)}}}}}{\color{#0066A7}{\uparrow}}}{=}\cos (4e^{x})\quad\hbox{and}\quad\dfrac{du}{dx}=\dfrac{d}{dx}(4e^{x})=4e^{x}\\ \end{eqnarray*} \]

Using the Chain Rule, we get \[ y^\prime =\dfrac{dy}{dx}=\dfrac{dy}{du}\cdot \dfrac{du}{dx}=\cos (4e^{x}) \cdot 4e^{x}=4e^{x}\cos (4e^{x}) \]