Suppose h=f∘g. Find h′(1) given that: f(1)=2f′(1)=1f′(2)=−4g(1)=2g′(1)=−3g′(2)=5
Solution Based on the Chain Rule using prime notation, we have h′(x0)=(f∘g)′(x0)=f′(g(x0))g′(x0)
When x0=1, h′(1)=f′(g(1))g′(1)=↑g(1)=2;g′(1)=−3f′(2)⋅(−3)=↑f′(2)=−4(−4)(−3)=12