Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 6Differentiating Exponential Functions

Find the derivative of each function:
(a) f(x)=2x (b) F(x)=3x (c) g(x)=(12)x2+1

Solution(a) f is an exponential function with base a=2. f(x)=ddx2x=2xln2ddxax=axlna

(b) Since F(x)=3x=13x=(13)x, F is an exponential function with base 13. So, F(x)=ddx(13)x=ddxax=axlna(13)xln13=(13)xln31=(13)xln3=13xln3

(c) y=g(x)=(12)x2+1 is a composite function. If u=x2+1, then y=(12)u and dydu=dduau=aulna(12)uln(12)=ln(12)=ln2(12)uln2=u=x2+1(12)x2+1ln2anddudx=2x So, by the Chain Rule, g(x)=dydx=dydududx=[(12)x2+1ln2](2x)=(ln2)x(12)x2