Find the derivative of each function:
(a) f(x)=2x (b) F(x)=3−x (c) g(x)=(12)x2+1
Solution (a) f is an exponential function with base a=2. f′(x)=ddx2x=2xln2ddxax=axlna
(b) Since F(x)=3−x=13x=(13)x, F is an exponential function with base 13. So, F′(x)=ddx(13)x=↑ddxax=axlna(13)xln13=(13)xln3−1=−(13)xln3=−13xln3
(c) y=g(x)=(12)x2+1 is a composite function. If u=x2+1, then y=(12)u and dydu=↑dduau=aulna(12)uln(12)=↑ln(12)=−ln2−(12)uln2=↑u=x2+1−(12)x2+1ln2anddudx=2x So, by the Chain Rule, g′(x)=dydx=dydu⋅dudx=[−(12)x2+1ln2](2x)=(−ln2)x(12)x2