Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 9Differentiating a Composite Function

Find y if:
(a) y=5cos2(3x+2) (b) y=sin3(π2x)

Solution(a) For y=5cos2(3x+2), we use the Chain Rule with y=5u2, u=cosv, and v=3x+2. Then y=5u2=5cos2v=5cos2(3x+2) and dydu=ddu(5u2)=10u=u=cosvv=3x+210cos(3x+2)dudv=ddvcosv=sinv=v=3x+2sin(3x+2)dvdx=ddx(3x+2)=3

205

Then y=dydx=Chain Ruledydududvdvdx=[10cos(3x+2)][sin(3x+2)][3]=30cos(3x+2)sin(3x+2)

(b) For y=sin3(π2x), we use the Chain Rule with y=u3, u=sinv, and v=π2x. Then y=u3=(sinv)3=[sin(π2x)]3=sin3(π2x), and dydu=dduu3=3u2=u=sinvv=π2x3[sin(π2x)]2=3sin2(π2x)dudv=ddvsinv=cosv=v=π2xcos(π2x)dvdx=ddx(π2x)=π2

Then y=dydx=Chain Ruledydududvdvdx=3sin2(π2x)cos(π2x)(π2)=3π2sin2(π2x)cos(π2x)