Find y′ if:
(a) y=5cos2(3x+2) (b) y=sin3(π2x)
Solution (a) For y=5cos2(3x+2), we use the Chain Rule with y=5u2, u=cosv, and v=3x+2. Then y=5u2=5cos2v=5cos2(3x+2) and dydu=ddu(5u2)=10u=↑u=cosvv=3x+210cos(3x+2)dudv=ddvcosv=−sinv=↑v=3x+2−sin(3x+2)dvdx=ddx(3x+2)=3
205
Then y′=dydx=↑Chain Ruledydu⋅dudv⋅dvdx=[10cos(3x+2)][−sin(3x+2)][3]=−30cos(3x+2)sin(3x+2)
(b) For y=sin3(π2x), we use the Chain Rule with y=u3, u=sinv, and v=π2x. Then y=u3=(sinv)3=[sin(π2x)]3=sin3(π2x), and dydu=dduu3=3u2=↑u=sinvv=π2x3[sin(π2x)]2=3sin2(π2x)dudv=ddvsinv=cosv=↑v=π2xcos(π2x)dvdx=ddx(π2x)=π2
Then y′=dydx=↑Chain Ruledydu⋅dudv⋅dvdx=3sin2(π2x)⋅cos(π2x)⋅(π2)=3π2sin2(π2x)cos(π2x)