Find an equation of the tangent line to the graph of the ellipse 3x2+4y2=2x at the point (12,−14).
Solution First we find the slope of the tangent line. We use the result from Example 2, and evaluate dydx=1−3x4y at (12,−14). dydx=1−3x4y=↑\vrulewidth0pcheight12.5ptdepth0ptx=12,y=−141−3⋅124⋅(−14)=12
The slope of the tangent line to the graph of 3x2+4y2=2x at the point (12,−14) is 12. An equation of the tangent line is y+14=12(x−12)y=12x−12