Processing math: 100%

EXAMPLE 1Differentiating Logarithmic Functions

Find y if:

  1. (a) y=(lnx)2
  2. (b) y=12logx
  3. (c) lnx+lny=2x

Solution(a) We use the Power Rule for Functions. Then y=ddx(lnx)2=ddx[u(x)]n=n[u(x)]n1dudx2lnxddxlnx=(2lnx)(1x)=2lnxx

(b) Remember that logx=log10x. Then y=12logx=12log10x. y=12(ddxlog10x)=121xln10=12xln10ddxlogax=1xlna

(c) We assume y is a differentiable function of x and use implicit differentiation. Then ddx(lnx+lny)=ddx(2x)ddxlnx+ddxlny=21x+1ydydx=2ddxlny=1ydydxy=dydx=y(21x)=y(2x1)xSolve fory=dydx.