Find y′ if:
Solution (a) We use the Power Rule for Functions. Then y′=ddx(lnx)2=↑ddx[u(x)]n=n[u(x)]n−1dudx2lnx⋅ddxlnx=(2lnx)(1x)=2lnxx
(b) Remember that logx=log10x. Then y=12logx=12log10x. y′=12(ddxlog10x)=12⋅1xln10=12xln10ddxlogax=1xlna
(c) We assume y is a differentiable function of x and use implicit differentiation. Then ddx(lnx+lny)=ddx(2x)ddxlnx+ddxlny=21x+1ydydx=2ddxlny=1ydydxy′=dydx=y(2−1x)=y(2x−1)xSolve fory′=dydx.