Find y′ if:
Solution
(a) y′=ddxln(5x)=ddx(5x)5x=55x=1xddxlnu(x)=u′(x)u(x)
(b) y′=ddx[xln(x2+1)]=xddxln(x2+1)+(ddxx)ln(x2+1)Product Rule=↑ddxlnu(x)=u′(x)u(x)x⋅ddx(x2+1)x2+1+1⋅ln(x2+1)=2x2x2+1+ln(x2+1)
224
(c) y=ln|x|={lnxifx>0ln(−x)ifx<0y′=ddxln|x|={1xifx>01−x(−1)=1xifx<0
That is, ddxln|x|=1x for all numbers x≠0.