Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 2Differentiating Logarithmic Functions

Find y if:

  1. (a) y=ln(5x)
  2. (b) y=xln(x2+1)
  3. (c) y=ln|x|

Solution

(a) y=ddxln(5x)=ddx(5x)5x=55x=1xddxlnu(x)=u(x)u(x)

(b) y=ddx[xln(x2+1)]=xddxln(x2+1)+(ddxx)ln(x2+1)Product Rule=ddxlnu(x)=u(x)u(x)xddx(x2+1)x2+1+1ln(x2+1)=2x2x2+1+ln(x2+1)

224

(c) y=ln|x|={lnxifx>0ln(x)ifx<0y=ddxln|x|={1xifx>01x(1)=1xifx<0

That is, ddxln|x|=1x for all numbers x0.