Find y′ if y=xx, x>0.
Solution Notice that xx is neither x raised to a fixed power a, nor a fixed base a raised to a variable power. We follow the steps for logarithmic differentiation:
Step 1 Take the natural logarithm of each side of y=xx, and simplify: lny=lnxx=xlnx
226
Step 2 Differentiate implicitly. ddxlny=ddx(xlnx)y′y=x⋅ddxlnx+(ddxx)⋅lnx=x(1x)+1⋅lnx=1+lnx
Step 3 Solve for y′: y′=y(1+lnx)=xx(1+lnx).