Processing math: 11%

EXAMPLE 8Expressing a Limit in Terms of e

Express each limit in terms of the number e:

  1. (a) lim
  2. (b) \lim\limits_{n\rightarrow \infty}\left( 1+\dfrac{3}{n}\right) ^{2n}

Solution(a) This limit resembles \lim\limits_{h\rightarrow 0}(1+h) ^{1/h}, and with some manipulation, it can be expressed in terms of \lim\limits_{h\rightarrow 0}(1+h) ^{1/h}. ( 1+2h) ^{1/h}= [ ( 1+2h) ^{1/( 2h) } ] ^{2}

Now let k=2h, and note that h\rightarrow 0 is equivalent to 2h=k\rightarrow 0. So, \begin{eqnarray*} && \lim\limits_{h\rightarrow 0}( 1+2h) ^{1/h}=\lim\limits_{k\rightarrow 0}\left[ \left( 1+k\right) ^{1/k}\right] ^{2}=\left[ \lim\limits_{k\rightarrow 0}\left( 1+k\right) ^{1/k}\right] ^{2} \underset{\underset{\color{#0066A7}{\hbox{\((2)\)}}}{\color{#0066A7}{\uparrow}}}{=} e^{2} \\[-10pt] && \end{eqnarray*}

(b) This limit resembles \lim\limits_{n\rightarrow \infty} \left( 1+\dfrac{1}{n}\right) ^{n}. We rewrite it as follows: \left( 1+\dfrac{3}{n}\right) ^{2n}=\left[ \left( 1+\dfrac{3}{n}\right) ^{2n} \right] ^{3/3}=\left[ \left( 1+\dfrac{3}{n}\right) ^{n/3}\right] ^{6}

Let k=\dfrac{n}{3}. Since n\rightarrow \infty is equivalent to \dfrac{n }{3}=k\rightarrow \infty \,, we find that \begin{eqnarray*} && \lim\limits_{n\rightarrow \infty }\left( 1+\dfrac{3}{n}\right) ^{2n}=\lim\limits_{k\rightarrow \infty }\left[ \left( 1+\dfrac{1}{k}\right) ^{k}\right] ^{6}=\left[ \lim\limits_{k\rightarrow \infty }\left( 1+\dfrac{1}{ k}\right) ^{k}\right] ^{6} \underset{\underset{\color{#0066A7}{\hbox{\((2)\)}}}{\color{#0066A7}{\uparrow}}}{=} e^{6} \end{eqnarray*}