Find \(\lim\limits_{x\rightarrow 0}\dfrac{\tan x-\!\sin x}{x^{2}\tan x}\).
Since \(\dfrac{1-\cos x}{x^{2}}\) is an indeterminate form at \(0\) of the type \(\dfrac{0}{0},\) we use L’Hôpital’s Rule.
\[ \begin{eqnarray*} &&\lim\limits_{x\rightarrow 0}\dfrac{\tan x-\!\sin x}{x^{2}\tan x} =\lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x^{2}}=\lim\limits_{x\rightarrow 0}\dfrac{ \dfrac{d}{\textit{dx}}\left( 1-\cos x\right) }{\dfrac{d}{\textit{dx}}x^{2}}=\lim\limits_{x \rightarrow 0}\dfrac{\sin x}{2x}\\[-20.7pt] &&\hspace{16.7pc}\color{#0066A7}{\underset{\hbox{L'H$\hat{\rm o}$pital's Rule}}{{\uparrow }}}\\[6pt] &&\hspace{9.7pc}=\dfrac{1}{2}\lim\limits_{x\rightarrow 0}\dfrac{\sin x}{x}=\dfrac{1}{2}\qquad \color{#0066A7}{{\hbox{$\lim\limits_{x\rightarrow 0}\dfrac{\sin x}{x} =1$}} } \end{eqnarray*} \]