Find:
We choose to use \dfrac{\ln x}{\dfrac{1}{x}} rather than \dfrac{x}{\dfrac{1}{\ln x}} because it is easier to find the derivatives of \ln x and \dfrac{1}{x} than it is to find the derivatives of x and \dfrac{1}{\ln x}.
Solution (a) Since \lim\limits_{x\rightarrow 0^{+}}x=0 and \lim\limits_{x\rightarrow 0^{+}}\ln x=-\infty , then x\ln x is an indeterminate form at 0^{+} of the type 0\cdot \infty . We change x\ln x to an indeterminate form of the type \dfrac{\infty }{\infty } by writing x\ln x= \dfrac{\ln x}{\dfrac{1}{x}} and using L’Hôpital’s Rule. \begin{eqnarray*} \lim\limits_{x\rightarrow 0^{+}}( x\ln x) &=&\lim\limits_{x\rightarrow 0^{+}}\dfrac{\ln x}{\dfrac{1}{x}}=\lim\limits_{x\rightarrow 0^{+}}\dfrac{\dfrac{d}{\textit{dx}}\ln x}{\dfrac{d}{\textit{dx}}\dfrac{1}{x}} =\lim\limits_{x\rightarrow 0^{+}}\dfrac{\dfrac{1}{x}}{-\dfrac{1}{x^{2}}}= \lim\limits_{x\rightarrow 0^{+}}( -x) =0\\[-20.9pt] &&\hspace{16pt}\quad\color{#0066A7}{\underset{\hbox{L'H$\hat{\rm o}$pital's Rule}} {{\kern1pt\left\uparrow{\vphantom{\vrule width0pc height13pt depth0pt}}\right.}}}\qquad\hspace{4.6pc} \hspace{3.7pc}\color{#0066A7}{\underset{\hbox{Simplify}}{{\kern1pt\left\uparrow{\vphantom{\vrule width0pc height13pt depth0pt}}\right.}}} \end{eqnarray*}
(b) Since \lim\limits_{x\rightarrow \infty }\;x=\infty and \lim\limits_{x\rightarrow \infty }\;\sin \dfrac{1}{x}=0, then x\sin \dfrac{1}{x} is an indeterminate form at \infty of the type 0\cdot \infty . We change x\;\sin \dfrac{1}{x} to an indeterminate form of the type \dfrac{0}{0} byeak writing \begin{eqnarray*} \lim\limits_{x\rightarrow \infty }x\;\sin \dfrac{1}{x}&=&\lim\limits_{x\rightarrow \infty } \dfrac{\sin \dfrac{1}{x}}{\dfrac{1}{x}}=\lim\limits_{t\rightarrow 0^{+}}\dfrac{\sin\;t}{t}=1 \\[-1.75pc] &&\qquad\hspace{26.1pt}\color{#0066A7}{\underset{{\hbox {Let} \;t=\dfrac{1}{x}}}{{\kern1pt\left\uparrow{\vphantom{\vrule width0pc height11pt depth0pt}}\right.}}} \end{eqnarray*}