Using Calculus to Graph a Function

Graph \(\ f(x)=\dfrac{x}{\sqrt{x^{2}+4}}\).

Solution

Step 1 The domain of \(f\) is all real numbers. The only intercept is \((0,0)\). So, we plot the point \((0,0) .\)

Step 2 We check for horizontal asymptotes. Since \[ \begin{eqnarray*} \lim\limits_{x\rightarrow \infty }f(x) =\lim\limits_{x\rightarrow \infty }\dfrac{x}{\sqrt{x^{2}+4}}=\sqrt{ \lim\limits_{x\rightarrow \infty }\dfrac{x^{2}}{x^{2}+4}} \underset{\underset{{\color{#0066A7}{\hbox{L’Hôpital’s Rule}}}} {\color{#0066A7}{{{\left\uparrow{\vphantom{width0pc height9pt depth0pt}}\right.}}}}}{=} \sqrt{\lim\limits_{x\rightarrow \infty }\dfrac{2x}{2x}}=1\\[-12.9pt] \end{eqnarray*} \]

the line \(y=1\) is a horizontal asymptote as \(x\rightarrow \infty .\) Since \(\lim\limits_{x\rightarrow -\infty }f(x) =-1,\) the line \(y=-1\) is also a horizontal asymptote as \(x\rightarrow -\infty .\) We draw the horizontal asymptotes on the graph.

313

Since \(f\) is defined for all real numbers, there are no vertical asymptotes.

Step 3\[ \begin{array}{@{\hspace*{-2.6pc}}rcl} \!\!f^\prime (x) &=&\dfrac{d}{\textit{dx}}\left( \dfrac{x }{\sqrt{x^{2}+4}}\right) =\dfrac{1\cdot \sqrt{x^{2}+4}-x\left[ \dfrac{1}{2} ( x^{2}+4) ^{-1/2}\cdot 2x\right] }{x^{2}+4}\\[5pt] &=&\dfrac{\sqrt{x^{2}+4}-\dfrac{x^{2}}{\sqrt{x^{2}+4}}}{x^{2}+4} =\dfrac{x^{2}+4-x^{2}}{( x^{2}+4) \sqrt{x^{2}+4}}=\dfrac{4}{(x^{2}+4)^{3/2}}\\ f^{\prime \prime} (x) &=& \dfrac{d}{\textit{dx}} \left[ \dfrac{4}{( x^{2}+4) ^{3/2}}\right] =4\left[ -\dfrac{3}{2} ( x^{2}+4) ^{-5/2}\right] \cdot 2x=\dfrac{-12x}{( x^{2}+4) ^{5/2}} \end{array} \]

Since \(f^\prime (x)\) is never \(0\) and \(f^\prime\) exists for all real numbers, there are no critical numbers.

Step 4 Since \(f^\prime (x) >0\) for all \(x\), \(f\) is increasing on \(( -\infty ,\infty)\) .

Step 5 Because there are no critical numbers, there are no local extreme values.

Step 6 We test for concavity. Since \(f^{\prime \prime} (x) >0\) on the interval \((-\infty ,0) \), \(f\) is concave up on \((-\infty ,0)\); and since \(f^{\prime \prime} (x) <0\) on the interval \(( 0,\infty ) \), \(f\) is concave down on \(( 0,\infty ) \). The concavity changes at \(0,\) and \(0\) is in the domain of \(f\), so the point \((0,0)\) is an inflection point of \(f\). Plot the inflection point.

Step 7Figure 49 shows the graph of \(f\).