Graph f(x)=x√x2+4.
Solution
Step 1 The domain of f is all real numbers. The only intercept is (0,0). So, we plot the point (0,0).
Step 2 We check for horizontal asymptotes. Since lim
the line y=1 is a horizontal asymptote as x\rightarrow \infty . Since \lim\limits_{x\rightarrow -\infty }f(x) =-1, the line y=-1 is also a horizontal asymptote as x\rightarrow -\infty . We draw the horizontal asymptotes on the graph.
313
Since f is defined for all real numbers, there are no vertical asymptotes.
Step 3 \begin{array}{@{\hspace*{-2.6pc}}rcl} \!\!f^\prime (x) &=&\dfrac{d}{\textit{dx}}\left( \dfrac{x }{\sqrt{x^{2}+4}}\right) =\dfrac{1\cdot \sqrt{x^{2}+4}-x\left[ \dfrac{1}{2} ( x^{2}+4) ^{-1/2}\cdot 2x\right] }{x^{2}+4}\\[5pt] &=&\dfrac{\sqrt{x^{2}+4}-\dfrac{x^{2}}{\sqrt{x^{2}+4}}}{x^{2}+4} =\dfrac{x^{2}+4-x^{2}}{( x^{2}+4) \sqrt{x^{2}+4}}=\dfrac{4}{(x^{2}+4)^{3/2}}\\ f^{\prime \prime} (x) &=& \dfrac{d}{\textit{dx}} \left[ \dfrac{4}{( x^{2}+4) ^{3/2}}\right] =4\left[ -\dfrac{3}{2} ( x^{2}+4) ^{-5/2}\right] \cdot 2x=\dfrac{-12x}{( x^{2}+4) ^{5/2}} \end{array}
Since f^\prime (x) is never 0 and f^\prime exists for all real numbers, there are no critical numbers.
Step 4 Since f^\prime (x) >0 for all x, f is increasing on ( -\infty ,\infty) .
Step 5 Because there are no critical numbers, there are no local extreme values.
Step 6 We test for concavity. Since f^{\prime \prime} (x) >0 on the interval (-\infty ,0) , f is concave up on (-\infty ,0); and since f^{\prime \prime} (x) <0 on the interval ( 0,\infty ) , f is concave down on ( 0,\infty ) . The concavity changes at 0, and 0 is in the domain of f, so the point (0,0) is an inflection point of f. Plot the inflection point.
Step 7 Figure 49 shows the graph of f.