Light travels at different speeds in different media (air, water, glass, etc.) Suppose that light travels from a point \(A\) in one medium, where its speed is \(c_{1}\), to a point \(B\) in another medium, where its speed is \( c_{2}.\) See Figure 61. We use Fermat’s principle that light always travels along the path that requires the least time to prove Snell’s Law of Refraction. \[\bbox[5px, border:1px solid black, #F9F7ED]{\bbox[#FAF8ED,5pt]{\frac{{\sin {\theta _1}}}{{{c_1}}} = \frac{{\sin {\theta _2}}}{{{c_2}}}}}\]
Since \[ \hbox{Time}= \dfrac{{\rm Distance}}{{\rm Speed }} \]
the travel time \(t_{1}\) from \(A=( 0,a)\) to \(P=( x,0)\) is \[ t_{1}=\frac{\sqrt{x^{2}+a^{2}}}{c_{1}} \]
and the travel time \(t_{2}\) from \(P=( x,0)\) to \(B=( k,-b)\) is \[ t_{2}=\frac{\sqrt{(k-x)^{2}+b^{2}}}{c_{2}} \]
The total time \(T=T(x)\) is given by \[ T(x) =t_{1}+t_{2}=\frac{\sqrt{x^{2}+a^{2}}}{c_{1}}+\frac{\sqrt{({k-x})^{2}+b^{2}}}{c_{2}} \]
To find the least time, we find the critical numbers of \(T.\) \[ \begin{equation} T' (x) =\frac{x}{c_{1}\sqrt{x^{2}+a^{2}}}-\frac{k-x}{c_{2} \sqrt{({k-x})^{2}+b^{2}}}=0 \tag{1} \end{equation} \]
From Figure 62, \[ \begin{equation} {\frac{x}{\sqrt{x^{2}+a^{2}}}=\sin\, \theta _{1}}\qquad \hbox{and}\qquad { \frac{k-x}{\sqrt{({k-x})^{2}+b^{2}}}=\sin\, \theta _{2}} \tag{2} \end{equation} \]
Using the result from (2) in equation (1), we have \[ \begin{eqnarray*} T' (x) = \frac{\sin\, \theta _{1}}{c_{1}}-{\frac{\sin\, \theta _{2}}{c_{2}}} &=&0 \\[3pt] {\frac{\sin\, \theta _{1}}{c_{1}}} &=&{\frac{\sin\, \theta _{2}}{c_{2}}} \end{eqnarray*} \]
325
Now to ensure that the minimum value of \(T\) occurs when \(T' (x)=0\), we show that \(T'' (x) >0\). From (1), \[ \begin{eqnarray*} {T'' }(x) &=&{\frac{d}{dx}\left[ {\frac{x}{c_{1}\sqrt{ x^{2}+a^{2}}}}\right] -\frac{d}{dx}\left[ {\frac{k-x}{c_{2}\sqrt{({k-x} )^{2}+b^{2}}}}\right] } \\[3pt] &=&{\frac{a^{2}}{c_{1}({x^{2}+a^{2}})^{3/2}}+\frac{b^{2} }{c_{2}[{({k-x})^{2}+b^{2}}]^{3/2}}>0} \end{eqnarray*} \]
Since \(T'' (x) >0\) for all \(x,\) \(T\) is concave up for all \(x,\) and the minimum value of \(T\) occurs at the critical number. That is, \(T\) is a minimum when \(\dfrac{\sin\, \theta _{1}}{c_{1}}=\dfrac{\sin\, \theta _{2}}{c_{2}}\).