Find all the antiderivatives of:
(b) Since \(\dfrac{d}{d\theta}\cos \theta = -\sin \theta\), all the antiderivatives of \(g(\theta) = -\sin \theta\) are of the form \(G(\theta ) =\cos \theta +C\).
330
(c) The derivative of \(\dfrac{2}{3}x^{3/2}\) is \(\left( \dfrac{2}{3}\right) \ \left( \dfrac{3}{2}x^{\hbox{$\frac{3}{2}-1$}}\right) =x^{1/2}\).
So, all the antiderivatives of \(h(x)=x^{1/2}\) are of the form \(H(x) ={{\dfrac{2}{3}}x^{3/2}+C}\), where \({C}\) is a constant.