Identifying Maximum and Minimum Values and Local Extreme Values from the Graph of a Function
Figures 10, 11, 12, 13, 14 and 15 show the graphs of six different functions. For each function:
Continuity is discussed in Section 1.3, pp. 93-102.
- Find the domain.
- Determine where the function is continuous.
- Identify the absolute maximum value and the absolute minimum value, if they exist.
- Identify any local extreme values.
Solution
Figure 10 (a) Domain: \(\left[ 0,\dfrac{3\pi }{2}\right]\)
(b) Continuous on \(\left[ 0,\dfrac{3\pi }{2}\right]\)
(c) Absolute maximum value:
\(f( 0) =1\)
Absolute minimum value:
\(f( \pi ) =-1\)
(d) No local maximum value;
local minimum value: \(f( \pi ) =-1\)
Figure 11 (a) Domain: \((-1,3)\)
(b) Continuous on \(( -1,3)\)
(c) Absolute maximum value:
\(f( 0) =1\)
Absolute minimum value:
\(f(2) =-7\)
(d) Local maximum value:
\(f( 0) =1\)
Local minimum value:
\(f(2) =-7\)
Figure 12 (a) Domain: \((-1,4]\)
(b) Continuous on \((-1,4]\)
(c) No absolute maximum value;
absolute minimum value:
\(f(4) =1\)
(d) No local maximum value;
no local minimum value
Figure 13 (a) Domain: \(( 0,e)\)
(b) Continuous on \(( 0,e)\)
(c) No absolute maximum value;
no absolute minimum value
(d) No local maximum value;
no local minimum value
Figure 14 (a) Domain: \([ 0,6]\)
(b) Continuous on \([ 0,6]\) except
at \(x=2\)
(c)Absolute maximum value:
\(f(2) =6\)
Absolute minimum value:
\(f(6) =-2\)
(d) Local maximum value: \(f(2) =6\)
Local minimum value: \(f( 1) =0\)
Figure 15 (a) Domain: \([ -2,2]\)
(b) Continuous on \([ -2,2]\) except at \(x=0\)
(c) Absolute maximum value:
\(f( -2) =3\), \(f(2) =3\)
No absolute minimum value
(d) Local maximum value: \(f( 0) =2\)
No local minimum value
265