Processing math: 42%

EXAMPLE 4Finding Absolute Maximum and Minimum Values

Find the absolute maximum value and absolute minimum value of the function f(x)={2x1if0x2x25x+9if2<x3

Solution The function f is continuous on the closed interval [0,3]. (You should verify this.) To find the absolute maximum value and absolute minimum value, we follow the three-step procedure.

Step 1 Find the critical numbers in the open interval (0,3):

  • On the open interval (0,2): f(x)=2x1 and f(x)=2. Since f(x)0 on the interval (0,2), there are no critical numbers in (0,2).
  • On the open interval (2,3): f(x)=x25x+9 and f(x)=2x5. Solving f(x)=2x5=0, we find x=52. Since 52 is in the interval (2,3), 52 is a critical number.
  • At x=2, the rule for f changes, so we investigate the one-sided limits of f(x)f(2)x2. lim
  • 270

    The one-sided limits are not equal, so the derivative does not exist at 2; 2 is a critical number.

    Figure 18 \begin{equation*} f(x) =\left\{\begin{array}{lll} 2x-1&{\rm if}&0\leq x\leq 2\\[4pt] x^{2}-5x+9&{\rm if}&2 < x \leq 3 \end{array}\right. \end{equation*}

    Step 2 Evaluate f at the critical numbers \dfrac{5}{2} and 2 and at the endpoints 0 and 3.

    x {f(x)} {f(x)}
    0 2\cdot 0-1 -1 \longleftarrow absolute minimum value
    2 2\cdot 2-1 3 \longleftarrow absolute maximum value
    \dfrac{5}{2} \left( \dfrac{5}{2}\right) ^{\!\!2}-5\left( \dfrac{5}{2}\right) +9=\dfrac{25}{4}-\dfrac{25}{2}+9 \dfrac{11}{4}
    3 3^{2}-5\cdot 3+9=9-15+9 3 \longleftarrow absolute maximum value

    Step 3 The largest value 3 is the absolute maximum value; the smallest value -1 is the absolute minimum value.