Using the Second Derivative Test to Identify Local Extrema

  1. Determine where \(f(x)=x-2\cos x,\) \(0\) \(\leq x\leq 2\pi\), is concave up and concave down.
  2. Find any inflection points.
  3. Use the Second Derivative Test to identify any local extreme values.

292

Solution (a) Since \(f\) is continuous on the closed interval \([0,2\pi]\) and \(f^\prime\) and \(f^{\prime \prime}\) exist on the open interval \(\left( 0,\,2\pi \right)\), we can use the Test for Concavity. The first and second derivatives of \(f\) are \[ f^\prime (x) =\dfrac{d}{\textit{dx}}(x-2\;\cos x) =1+2\;\sin x \qquad \hbox{and}\qquad f^{\prime \prime} (x) =\dfrac{d}{\textit{dx}}(1+2\;\sin\;x) =2\;\cos x \]

To determine concavity, we solve the inequalities \(f^{\prime \prime} (x) <0\) and \(f^{\prime \prime} (x) >0.\) Since \(f^{\prime \prime} (x) =2\;\cos\;x,\) we have

  • \(f^{\prime \prime} (x) > 0\qquad \hbox{ when }0<x<\dfrac{\pi }{2}\quad \hbox{ and }\quad\dfrac{3\pi }{2}<x<2\pi\)
  • \(f^{\prime \prime} (x) < 0\qquad \hbox{ when }\dfrac{\pi }{2}<x<\dfrac{3\pi }{2}\)
  • The function \(f\) is concave up on the intervals \(\left( 0,\dfrac{\pi }{2}\right)\) and \(\left( \dfrac{3\pi }{2},2\pi \right) ,\) and \(f\) is concave down on the interval \(\left( \dfrac{\pi }{2},\dfrac{3\pi }{2}\right)\).

    (b) The concavity of \(f\) changes at \(\dfrac{\pi }{2}\) and \(\dfrac{3\pi }{2}\), so the points \(\left( \dfrac{\pi }{2},\dfrac{\pi }{2}\right)\) and \(\left( \dfrac{3\pi }{2},\dfrac{3\pi }{2}\right)\) are inflection points of \(f\).

    (c) We find the critical numbers by solving the equation \(f^\prime(x) =0\). \[ \begin{eqnarray*} 1+2\;\sin\;x &=& 0\qquad 0\leq x\leq 2\pi \\ \sin\;x &=&-\dfrac{1}{2} \\ x=\frac{7\pi }{6}\qquad &&\hbox{ or }\qquad {x=\frac{11\pi }{6}} \end{eqnarray*} \]

    Now using the Second Derivative Test, we get \[ f^{\prime \prime} \left(\dfrac{7\pi }{6}\right) =2\;\cos \left( \dfrac{7\pi }{6}\right) =- \sqrt{3}<0 \]

    and \[ f^{\prime \prime} \left( \dfrac{11\pi }{6}\right) =2\;\cos \left(\dfrac{11\pi}{6}\right) = \sqrt{3}>0 \]

    So, \[ f\left( \dfrac{7\pi }{6}\right) =\dfrac{7\pi }{6}-2\;\cos \dfrac{7\pi }{6}=\dfrac{7\pi }{6}+ \sqrt{3}\approx 5.4 \]

    is a local maximum value, and \[ f\left( \dfrac{11\pi }{6}\right) =\dfrac{11\pi }{6}-2\cos \dfrac{11\pi }{6}=\dfrac{11\pi }{6}- \sqrt{3}\approx 4.03 \]

    is a local minimum value.