292
To determine concavity, we solve the inequalities \(f^{\prime \prime} (x) <0\) and \(f^{\prime \prime} (x) >0.\) Since \(f^{\prime \prime} (x) =2\;\cos\;x,\) we have
The function \(f\) is concave up on the intervals \(\left( 0,\dfrac{\pi }{2}\right)\) and \(\left( \dfrac{3\pi }{2},2\pi \right) ,\) and \(f\) is concave down on the interval \(\left( \dfrac{\pi }{2},\dfrac{3\pi }{2}\right)\).
(b) The concavity of \(f\) changes at \(\dfrac{\pi }{2}\) and \(\dfrac{3\pi }{2}\), so the points \(\left( \dfrac{\pi }{2},\dfrac{\pi }{2}\right)\) and \(\left( \dfrac{3\pi }{2},\dfrac{3\pi }{2}\right)\) are inflection points of \(f\).
(c) We find the critical numbers by solving the equation \(f^\prime(x) =0\). \[ \begin{eqnarray*} 1+2\;\sin\;x &=& 0\qquad 0\leq x\leq 2\pi \\ \sin\;x &=&-\dfrac{1}{2} \\ x=\frac{7\pi }{6}\qquad &&\hbox{ or }\qquad {x=\frac{11\pi }{6}} \end{eqnarray*} \]
Now using the Second Derivative Test, we get \[ f^{\prime \prime} \left(\dfrac{7\pi }{6}\right) =2\;\cos \left( \dfrac{7\pi }{6}\right) =- \sqrt{3}<0 \]
and \[ f^{\prime \prime} \left( \dfrac{11\pi }{6}\right) =2\;\cos \left(\dfrac{11\pi}{6}\right) = \sqrt{3}>0 \]
So, \[ f\left( \dfrac{7\pi }{6}\right) =\dfrac{7\pi }{6}-2\;\cos \dfrac{7\pi }{6}=\dfrac{7\pi }{6}+ \sqrt{3}\approx 5.4 \]
is a local maximum value, and \[ f\left( \dfrac{11\pi }{6}\right) =\dfrac{11\pi }{6}-2\cos \dfrac{11\pi }{6}=\dfrac{11\pi }{6}- \sqrt{3}\approx 4.03 \]
is a local minimum value.