Find:
Solution (a) All the antiderivatives of f(x)=x4 are F(x)=x55+C, so ∫x4dx=x55+C
380
(b) All the antiderivatives of f(x)=√x=x1/2 are F(x)=x3/232+C=2x3/23+C, so ∫√xdx=2x3/23+C
Trigonometric identities are discussed in Appendix A.4, pp. A-32 to A-35.
(c) No antiderivative in Table 1 corresponds to f(x)=sinxcos2x, so we begin by using trigonometric identities to rewrite sinxcos2x in a form whose antiderivative is recognizable. sinxcos2x=sinxcosx⋅cosx=1cosx⋅sinxcosx=secxtanx
Then ∫sinxcos2xdx=∫secxtanxdx=secx+C