Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 1Finding Indefinite Integrals

Find:

  1. (a) x4dx
  2. (b) xdx
  3. (c) sinxcos2xdx

Solution (a) All the antiderivatives of f(x)=x4 are F(x)=x55+C, so x4dx=x55+C

380

(b) All the antiderivatives of f(x)=x=x1/2 are F(x)=x3/232+C=2x3/23+C, so xdx=2x3/23+C

Trigonometric identities are discussed in Appendix A.4, pp. A-32 to A-35.

(c) No antiderivative in Table 1 corresponds to f(x)=sinxcos2x, so we begin by using trigonometric identities to rewrite sinxcos2x in a form whose antiderivative is recognizable. sinxcos2x=sinxcosxcosx=1cosxsinxcosx=secxtanx

Then sinxcos2xdx=secxtanxdx=secx+C