Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 1Finding Indefinite Integrals Using Substitution

Find:

  1. (a) sin(3x+2)dx
  2. (b) xx2+1dx
  3. (c) exxdx

Solution (a) Since we know sinxdx, we let u=3x+2. Then du=3dx so dx=du3. sin((3x+2)udxdu2=sinudu3=13sinudu=13(cosu)+C=u=3x+213cos(3x+2)+C

(b) We let u=x2+1. Then du=2xdx, so xdx=du2. xx2+1dx=x2+1uxdxdu2=udu2=12u1/2du=12(u3/232)+C=(x2+1)3/23+C

(c) We let u=x=x1/2. Then du=12x1/2dx=dx2x, so dxx =2du. exxdx=exdxx=eu2du=2eu+C=2ex+C