Find:
Solution (a) Since we know ∫sinxdx, we let u=3x+2. Then du=3dx so dx=du3. ∫sin((3x+2)⏟udx⏟du2=∫sinudu3=13∫sinudu=13(−cosu)+C=↑u=3x+2−13cos(3x+2)+C
(b) We let u=x2+1. Then du=2xdx, so xdx=du2. ∫x√x2+1dx=∫√x2+1⏟uxdx⏟du2=∫√udu2=12∫u1/2du=12(u3/232)+C=(x2+1)3/23+C
(c) We let u=√x=x1/2. Then du=12x−1/2dx=dx2√x, so dx√x =2du. ∫e√x√xdx=∫e√x⋅dx√x=∫eu⋅2du=2eu+C=2e√x+C