Find ∫x√4+xdx.
Solution Substitution I Let u=4+x. Then du=dx. Since u=4+x, x=u−4. Substituting gives ∫x√4+xdx=↑u=x+4∫(u−4)⏟x√u↑4+xdu⏟dx=∫(u3/2−4u1/2)du=u5/252−4⋅u3/232+C=2(4+x)5/25−8(4+x)3/23+C
Substitution II Let u=√4+x, so u2=4+x and x=u2−4. Then dx=2udu and \begin{eqnarray*} \int {x\sqrt{4+x}}\,dx & = &\int {(}\underset{\color{#0066A7}{\hbox{\(x\)}}}{\underbrace{{u^{2}-4}}}{)(u)(}\underset{\color{#0066A7}{\hbox{\(dx\)}}}{\underbrace{{2u\,du}}}{)= 2 \int {(u^{4}-4u^{2})\,du}}=2\left[ {\dfrac{{u^{5}}}{{5}}}-{\dfrac{{4u^{3}}}{{3}}}\right] +C \\ &=&\dfrac{2}{5} \big(\sqrt{4+x}\,\big) ^{5} -\dfrac{8}{3} \big(\sqrt{4+x}\,\big) ^{3}+C= \dfrac{2(4+x)^{5/2}}{5} -\dfrac{8(4+x)^{3/2}}{3}+C \end{eqnarray*}