Find ∫20x√4−x2dx.
Solution
Method 1: Use the related indefinite integral and then apply the Fundamental Theorem of Calculus. The related indefinite integral ∫x√4−x2dx can be found using the substitution u=4−x2. Then du=−2xdx, so xdx=−du2. ∫x√4−x2dx=∫√u(−du2)=−12∫u1/2du=−12⋅u3/232+C=−13(4−x2)3/2+C
Then by the Fundamental Theorem of Calculus, ∫20x√4−x2dx=−13[(4−x2)3/2]20=−13[0−43/2]=83
Method 2: Find the definite integral directly by making a substitution in the integrand and changing the limits of integration. We let u=4−x2; then du=−2xdx. Now use the function u=4−x2 to change the limits of integration.
Then
When using substitution to find a definite integral directly, remember to change the limits of integration.
∫20x√4−x2dx=↑u=4−x2xdx=−12du∫04√u(−du2)=−12∫04√udu=−12⋅[u3/232]04=−13(0−8)=83