Find:
Solution (a) If f(x)=x7−4x3+x, then f(−x)=(−x)7−4(−x)3+(−x)=−(x7−4x3+x)=−f(x). Since f is an odd function, ∫3−3(x7−4x3+x)dx=0
(b) If g(x)=x4−x2+3, then g(−x)=(−x)4−(−x)2+3=x4−x2+3=g(x). Since g is an even function, ∫2−2(x4−x2+3)dx=2∫20(x4−x2+3)dx=2[x55−x33+3x]20=2[325−83+6]=29215