Approximate the area \(A\) under the graph of \(f(x) = x^{2}\) from \(0\) to \(10\) by using lower sums \(s_{n}\) (rectangles that lie under the graph) for:
347
\[ s_{2}=\sum\limits_{i=1}^{2}~f(c_{i})\Delta x=\Delta x\sum\limits_{i=1}^{2}f(c_{i}) \underset{\underset{\underset{\color{#0066A7}{f\left(c_{1}\right) =f\left( 0\right);f\left( c_{2}\right) =f\left(5\right)}}{\color{#0066A7}{\Delta x=5}}}{\color{#0066A7}{\uparrow}}}{=}5\,\left[ ~f(0)+f(5)\right] \underset{\underset{\underset{\color{#0066A7}{f(5)=25}}{\color{#0066A7}{f(0)=0}}}{\color{#0066A7}{\uparrow}}}{=}5(0+25)=125 \]
(b) For \(n=5\), partition the interval \([0,10]\) into five subintervals \([0,2] ,\) \([2,4] ,\) \([4,6] , \) \([6,8] ,\) \([8,10]\), each of length \(\Delta x = \dfrac{10-0}{5}=2\). See Figure 9(b). The lower sum \(s_{5}\) is \[ \begin{eqnarray*} s_{5} &=&\sum\limits_{i=1}^{5} f(c_{i})\Delta x=\Delta x\sum\limits_{i=1}^{5}f(c_{i})=2 [ f(0)+f(2)+f(4) +f(6)+f(8)] \\ &=&2(0+4+16+36+64)=240 \end{eqnarray*} \]
(c) For \(n=10\), partition \([0,10]\) into \(10\) subintervals, each of length \(\Delta x=\dfrac{10-0}{10}=1\). See Figure 9(c). The lower sum \(s_{10}\) is \[ \begin{eqnarray*} s_{10} &=&\sum\limits_{i=1}^{10} f(c_{i})\Delta x=\Delta x\sum\limits_{i=1}^{10}f(c_{i})=1[ f(0)+f(1)+f(2)+\cdots +f(9) ] \\ &=&0+1+4+9+16+25+36+49+64+81=285 \end{eqnarray*} \]