Solution (a) The Riemann sums for f(x)=x^{2}-3on the closed interval [0,6] are \sum\limits_{i=1}^{n}f(u_{i}) \Delta x_{i}=\sum\limits_{i=1}^{n}\big( u_{i}^{2}-3\big) \Delta x_{i}
where [0,6] is partitioned into n subintervals [x_{i-1}, x_{i}] , and u_{i} is some number in the subinterval [x_{i-1}, x_{i}], i=1,2, \ldots, n.
(b) Since \lim\limits_{\max \Delta x_{i}\rightarrow 0}\sum\limits_{i=1}^{n}\big( u_{i}^{2}-3\big) \Delta x_{i} exists, then \lim\limits_{\max \Delta x_i \rightarrow 0}\sum\limits_{i=1}^{n}\big(u_{i}^{2}-3\big) \Delta x_{i}=\int_{0}^{6}( x^{2}-3) dx