Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 3Using Property (3) of the Definite Integral

Find 213x36x25x+42xdx.

Solution The function f(x)=3x36x25x+42x is continuous on the closed interval [1,2]. Using algebra and the properties of the definite integral, we get 213x36x25x+42xdx=21[32x23x52+2x]dx=2132x2dx213xdx2152dx+212x dx=3221x2 dx321xdx5221 dx+2211x dx=32[x33]213[x22]2152[x]21+2[ln|x|]21=12(81)3(212)52(21)+2(ln2ln1)=72+2ln22.114