Find ∫213x3−6x2−5x+42xdx.
Solution The function f(x)=3x3−6x2−5x+42x is continuous on the closed interval [1,2]. Using algebra and the properties of the definite integral, we get ∫213x3−6x2−5x+42xdx=∫21[32x2−3x−52+2x]dx=∫2132x2dx−∫213xdx−∫2152dx+∫212x dx=32∫21x2 dx−3∫21xdx−52∫21 dx+2∫211x dx=32[x33]21−3[x22]21−52[x]21+2[ln|x|]21=12(8−1)−3(2−12)−52(2−1)+2(ln2−ln1)=−72+2ln2≈−2.114