Find the area of the region enclosed by the graphs of \(f(x) =e^{x}\) and \(g(x) =\sqrt{x}\) and the lines \(x=0\) and \(x=1\).
From the graph, we see that \(f(x) \geq g(x)\) on the interval \([0,1]\). Then, using the definition of area, we have \begin{eqnarray*} A &=&\int_{a}^{b}[f(x)-g(x)]~{\it dx}=\int_{0}^{1}( e^{x}-\sqrt{x}) ~{\it dx}\\[2pt] &=&\int_{0}^{1}e^{x}~{\it dx}-\int_{0}^{1}x^{1/2}~{\it dx}=\big[ e^{x}\big] _{0}^{1}-\left[ \dfrac{x^{3/2}}{\dfrac{3}{2}}\right] _{0}^{1} \\[5pt] &=&( e^{1}-e^{0}) -\dfrac{2}{3}( 1-0) =e-1-\dfrac{2}{3}=e-\dfrac{5}{3} \hbox{ square units} \end{eqnarray*}