A solid has a circular base of radius \(3\) units. Find the volume \(V\) of the solid if every plane cross section that is perpendicular to a fixed diameter is an equilateral triangle.
435
The volume \(V\) of the solid is \begin{eqnarray*} V&=&\int_{a}^{b}A(x)~{\it dx}=\int_{-3}^{3}\sqrt{3}(9-x^{2})~{\it dx} \underset{\underset{\underset{\color{#0066A7}{\hbox{an even function.}}}{\color{#0066A7}{\hbox{The integrand is}}}} {\color{#0066A7}{\uparrow }}} {=}2\sqrt{3}\int_{0}^{3}(9-x^{2})~{\it dx}=2\sqrt{3}\left[ 9x-\frac{ x^{3}}{3}\right] _{0}^{3}\\[-10pt] &=&36\sqrt{3}\hbox{ cubic units} \end{eqnarray*}