Find \(\int \dfrac{dx}{x(x-1)^{2}}\).
We find \(A,\) \(B,\) and \(C\) by choosing values of \(x\) that cause one or more terms to drop out. When \(x=1,\) we have \(1=C\cdot 1,\) so \(C=1\). When \(x=0,\) we have \(1=A(0-1)^{2},\) so \(A=1.\) Now using \(A=1\) and \(C=1,\) we have \[ \begin{equation*} 1=(x-1)^{2}+B\cdot x(x-1)+ 1 \cdot x \end{equation*} \]
Suppose we let \(x=2.\) (Any choice other than \(0\) and \(1\) will also work.) Then \[ \begin{eqnarray*} 1 &=&1+2B+2 \\ B &=&-1 \end{eqnarray*} \]
Then \[ \begin{array}{l@{\qquad}l} \dfrac{1}{x(x-1)^{2}}=\dfrac{1}{x}+\dfrac{-1}{(x-1) }+\dfrac{1}{(x-1)^{2}} \quad{\color{#0066A7}{\hbox{\(A=1\)}}\quad \quad{\color{#0066A7}{\hbox{\(B=-1\)}}}\quad \quad{\color{#0066A7}{\hbox{\(C=1\)}}}} \end{array} \]
503
So, \[ \begin{eqnarray*} \int \dfrac{dx}{x(x-1)^{2}} &=& \int \dfrac{dx}{x}- \int \dfrac{dx}{x-1}+ \int \dfrac{dx}{(x-1)^{2}}\\[7pt] &=& \ln \vert x \vert -\ln \vert x-1\vert -\dfrac{1}{x-1} +C_{1} \end{eqnarray*} \]