Find ∫3xx3−1dx.
Solution The denominator is x3−1=(x−1)(x2+x+1). Since x−1 is a nonrepeated linear factor, by Case 1 the decomposition of 3xx3−1=3x(x−1)(x2+x+1) has the term Ax−1.
The discriminant of the quadratic equation x2+x+1=0 is negative, so x2+x+1 is an irreducible quadratic factor of q, and the decomposition of pq also contains the term Bx+Cx2+x+1. Then 3xx3−1=Ax−1+Bx+Cx2+x+1
Clearing the denominators, we have 3x=A(x2+x+1)+(Bx+C)(x−1)
This is an identity in x. When x=1, we have 3=3A, so A=1. With A=1, the identity becomes 3x=(x2+x+1)+(Bx+C)(x−1)−x2+2x−1=(Bx+C)(x−1)−(x−1)2=(Bx+C)(x−1)−(x−1)=Bx+CB=−1,C=1
504
So, 3xx3−1=1x−1+−x+1x2+x+1∫3xx3−1dx=∫(1x−1+−x+1x2+x+1)dx=∫1x−1dx+∫−x+1x2+x+1dx=ln|x−1|−∫x−1x2+x+1dx
To find the integral on the right, we complete the square in the denominator and use substitution. ∫x−1x2+x+1dx=∫x−1(x+12)2+34dx=↑\vrulewidth0pcheight11ptdepth0ptu=x+12∫u−32u2+34du=∫uu2+34du−32∫duu2+34=12ln(u2+34)−32[2√3tan−1(2√3u)]∫duu2+a2=1atan−1(ua)=12ln(u2+34)−√3tan−1(2√3u)=12ln(x2+x+1)−√3tan−1(2x+1√3)
Then from (2), ∫3xx3−1dx=ln|x−1|−12ln(x2+x+1)+√3tan−1(2x+1√3)+C1