Loading [MathJax]/jax/output/CommonHTML/jax.js

EXAMPLE 4Integrating a Rational Function Whose Denominator Contains a Distinct Irreducible Quadratic Factor

Find 3xx31dx.

Solution  The denominator is x31=(x1)(x2+x+1). Since x1 is a nonrepeated linear factor, by Case 1 the decomposition of 3xx31=3x(x1)(x2+x+1) has the term Ax1.

The discriminant of the quadratic equation x2+x+1=0 is negative, so x2+x+1 is an irreducible quadratic factor of q, and the decomposition of pq also contains the term Bx+Cx2+x+1. Then 3xx31=Ax1+Bx+Cx2+x+1

Clearing the denominators, we have 3x=A(x2+x+1)+(Bx+C)(x1) 

This is an identity in x. When x=1, we have 3=3A, so A=1. With A=1, the identity becomes 3x=(x2+x+1)+(Bx+C)(x1)x2+2x1=(Bx+C)(x1)(x1)2=(Bx+C)(x1)(x1)=Bx+CB=1,C=1

504

So, 3xx31=1x1+x+1x2+x+13xx31dx=(1x1+x+1x2+x+1)dx=1x1dx+x+1x2+x+1dx=ln|x1|x1x2+x+1dx

To find the integral on the right, we complete the square in the denominator and use substitution. x1x2+x+1dx=x1(x+12)2+34dx=\vrulewidth0pcheight11ptdepth0ptu=x+12u32u2+34du=uu2+34du32duu2+34=12ln(u2+34)32[23tan1(23u)]duu2+a2=1atan1(ua)=12ln(u2+34)3tan1(23u)=12ln(x2+x+1)3tan1(2x+13)

Then from (2), 3xx31dx=ln|x1|12ln(x2+x+1)+3tan1(2x+13)+C1