Processing math: 100%

EXAMPLE 5Integrating a Rational Function Whose Denominator Contains a Repeated Irreducible Quadratic Factor

Find x3+1(x2+4)2dx.

Solution  The denominator is a repeated, irreducible quadratic, so the decomposition of x3+1(x2+4)2 is x3+1(x2+4)2=Ax+Bx2+4+Cx+D(x2+4)2

505

Clearing fractions and combining terms give x3+1=(Ax+B)(x2+4)+Cx+Dx3+1=Ax3+Bx2+(4A+C)x+4B+D

Equating coefficients, we get A=1B=04A+C=04B+D=1C=4D=1

Then x3+1(x2+4)2=xx2+4+4x+1(x2+4)2

and x3+1(x2+4)2dx=xx2+4dx+4x+1(x2+4)2dx=xx2+4dx4x(x2+4)2dx+dx(x2+4)2

In the first two integrals on the right in (3), we use the substitution u=x2+4 , x0. Then du=2xdx, and

  • xx2+4dx=12duu=12ln|u|=12ln(x2+4)
  • 4x(x2+4)2dx=2duu2=2u=2x2+4
  • In the third integral on the right in (3), we use the trigonometric substitution x=2tanθ, π2<θ<π2. Then dx=2sec2θdθ, and dx(x2+4)2=2sec2θdθ(4tan2θ+4)2=216sec2θdθ(sec2θ)2=18cos2θdθ=181+cos(2θ)2dθ=116[θ+12sin(2θ)]=116(θ+sinθcosθ)

    To express the solution in terms of x, either use the triangles in Figure 10 or use trigonometric identities as follows: sinθcosθ=sinθcosθcos2θ=tanθsec2θ=tanθtan2θ+1=x2x24+1=2xx2+4

    Then dx(x2+4)2=116(θ+sinθcosθ)=x=2tanθ;θ=tan1x2116(tan1x2+2xx2+4)

    Figure 10 tanθ=x2,π2<θ<π2

    Now use the results of (3), (4), (5), and (6): x3+1(x2+4)2dx=12ln(x2+4)+2x2+4+116tan1x2+x8(x2+4)+C1