Processing math: 100%

EXAMPLE 2Approximating 21exxdx Using the Trapezoidal Rule

Use the Trapezoidal Rule with n=4 and n=6 to approximate 21exxdx. Express the answer rounded to three decimal places.

Solution  We begin by partitioning the interval [1,2] into four subintervals, each of width Δx=214=14: [1,54][54,32][32,74][74,2]

The values of f(x)=exx corresponding to each endpoint are f(1)=ef(54)=4e5/45f(32)=2e3/23f(74)=4e7/47f(2)=e22

511

Then, using the Trapezoidal Rule, we get 21exxdx124[e+24e5/45+22e3/23+24e7/47+e22]3.069

To approximate 21exxdx using six subintervals, we partition [1,2] into six subintervals, each of width Δx=216=16: [1,76][76,43][43,32][32,53][53,116][116,2]

Then, using the Trapezoidal Rule, we get 21exxdx126[f(1)+2f(76)+2f(43)+2f(32)+2f(53)+2f(116)+f(2)]3.063