Use the Trapezoidal Rule with n=4 and n=6 to approximate ∫21exxdx. Express the answer rounded to three decimal places.
Solution We begin by partitioning the interval [1,2] into four subintervals, each of width Δx=2−14=14: [1,54][54,32][32,74][74,2]
The values of f(x)=exx corresponding to each endpoint are f(1)=ef(54)=4e5/45f(32)=2e3/23f(74)=4e7/47f(2)=e22
511
Then, using the Trapezoidal Rule, we get ∫21exxdx≈12⋅4[e+2⋅4e5/45+2⋅2e3/23+2⋅4e7/47+e22]≈3.069
To approximate ∫21exxdx using six subintervals, we partition [1,2] into six subintervals, each of width Δx=2−16=16: [1,76][76,43][43,32][32,53][53,116][116,2]
Then, using the Trapezoidal Rule, we get ∫21exxdx≈12⋅6[f(1)+2f(76)+2f(43)+2f(32)+2f(53)+2f(116)+f(2)]≈3.063