Use Simpson’s Rule with \(n=4\) to approximate \(\int_{\pi }^{2\pi }\dfrac{\sin x}{x}dx\). Express the answer rounded to three decimal places.
each of width \(\dfrac{\pi }{4}.\) The value of \(f( x) =\dfrac{\sin x}{x}\) corresponding to each endpoint is \[ \begin{eqnarray*} f(\pi) &=& 0\ \ \ f\!\left( \dfrac{5\pi }{4}\right) = - \dfrac{2\sqrt{2}}{5\pi}\ \ \ f\!\left( \dfrac{3\pi }{2} \right) =-\dfrac{2}{3\pi}\ \ \ f\!\left( \dfrac{7\pi }{4}\right) = -\dfrac{2\sqrt{2}}{7\pi}\quad f(2\pi) =0 \end{eqnarray*} \]
Then using Simpson’s Rule, we get \[ \begin{eqnarray*} \int_{\pi }^{2\pi }\dfrac{\sin x}{x}\,dx &\approx &\dfrac{2\pi -\pi }{3\cdot 4} \left[ f(\pi )+4\, f\! \left( \dfrac{5\pi }{4}\right) +2 f\! \left( \dfrac{3\pi }{2}\right) +4 f\! \left( \dfrac{7\pi }{4}\right) +f( 2\pi ) \right] \nonumber \\[7pt] &= &\left( \dfrac{\pi }{12}\right) \left[ 0+4\left( -\dfrac{2\sqrt{2}}{ 5\pi }\right) +2\left( -\dfrac{2}{3\pi }\right) +4\left( -\dfrac{2\sqrt{2}}{ 7\pi }\right) +0\right] \approx -0.434 \end{eqnarray*} \]