Processing math: 100%

EXAMPLE 6Approximating an Integral Using Simpson’s Rule

Use Simpson’s Rule with n=4 to approximate 2ππsinxxdx. Express the answer rounded to three decimal places.

Solution We partition the interval [π,2π] into the four subintervals [π,5π4][5π4,3π2][3π2,7π4][7π4,2π]

each of width π4. The value of f(x)=sinxx corresponding to each endpoint is f(π)=0   f(5π4)=225π   f(3π2)=23π   f(7π4)=227πf(2π)=0

Then using Simpson’s Rule, we get 2ππsinxxdx2ππ34[f(π)+4f(5π4)+2f(3π2)+4f(7π4)+f(2π)]=(π12)[0+4(225π)+2(23π)+4(227π)+0]0.434