Use Simpson’s Rule with n=4 to approximate ∫2ππsinxxdx. Express the answer rounded to three decimal places.
Solution We partition the interval [π,2π] into the four subintervals [π,5π4][5π4,3π2][3π2,7π4][7π4,2π]
each of width π4. The value of f(x)=sinxx corresponding to each endpoint is f(π)=0 f(5π4)=−2√25π f(3π2)=−23π f(7π4)=−2√27πf(2π)=0
Then using Simpson’s Rule, we get ∫2ππsinxxdx≈2π−π3⋅4[f(π)+4f(5π4)+2f(3π2)+4f(7π4)+f(2π)]=(π12)[0+4(−2√25π)+2(−23π)+4(−2√27π)+0]≈−0.434