Processing math: 100%

EXAMPLE 2Using a Table of Integrals

Use a Table of Integrals to find x2tan1xdx.

Solution Find the subsection of the table titled Integrals Containing Inverse Trigonometric Functions. Then look for an integral whose form closely resembles the problem. You should find Integral 114: xntan1xdx=1n+1(xn+1tan1xxn+1dx1+x2)n1

521

This is the integral we seek with n=2. x2tan1x dx=13(x3tan1xx3dx1+x2)

We find the integral on the right by using the substitution u=1+x2. Then du=2xdx and x31+x2dx=x2xdx1+x2=u1udu2=12(11u)du=12u12ln|u|=1+x22ln(1+x2)2

So, x2tan1xdx=13(x3tan1xx31+x2dx)=13[x3tan1x1+x22+12ln(1+x2)]+C