Use a Table of Integrals to find ∫x2tan−1xdx.
Solution Find the subsection of the table titled Integrals Containing Inverse Trigonometric Functions. Then look for an integral whose form closely resembles the problem. You should find Integral 114: ∫xntan−1xdx=1n+1(xn+1tan−1x−∫xn+1dx1+x2)n≠−1
521
This is the integral we seek with n=2. ∫x2tan−1x dx=13(x3tan−1x−∫x3dx1+x2)
We find the integral on the right by using the substitution u=1+x2. Then du=2xdx and ∫x31+x2dx=∫x2xdx1+x2=∫u−1udu2=12∫(1−1u)du=12u−12ln|u|=1+x22−ln(1+x2)2
So, ∫x2tan−1xdx=13(x3tan−1x−∫x31+x2dx)=13[x3tan−1x−1+x22+12ln(1+x2)]+C