Use a Table of Integrals to find \(\int \dfrac{3x+5}{\sqrt{3x+6}}\,dx\).
To express the given integral as one with a single variable in the numerator, use the substitution \(u=3x+5.\) Then \(du=3\,{\it dx}.\) Since \[ \sqrt{3x+6}=\sqrt{(3x+5) +1}=\sqrt{u+1} \]
we find \[ \int \dfrac{3x+5}{\sqrt{3x+6}}\,dx \underset{\underset{\color{#0066A7}{\hbox{\(u=3x+5, \tfrac{1}{3}du=dx\)}}}{\color{#0066A7}{\uparrow }}}{=} \dfrac{1}{3}\int \dfrac{u\,du}{\sqrt{u+1}} \\ \]
which is in the form of (1) with \(a=1\) and \(b=1\) So, \[ \begin{align*} \int \dfrac{3x+5}{\sqrt{3x+6}}\,dx = \dfrac{1}{3}\int \dfrac{udu}{\sqrt{u+1}} \underset{\underset{\color{#0066A7}{\hbox{(1)}}}{{\color{#0066A7}\uparrow}}}{=}\dfrac{1}{3} \cdot \dfrac{2}{3} (u-2) \sqrt{1+u}+C \\ \underset{\underset{\color{#0066A7}{u=3x+5}}{\color{#0066A7}{\uparrow}}}{=}\dfrac{2}{9}[(3x+5) -2] \sqrt{1+(3x+5)}+C=\dfrac{2}{3}(x+1) \sqrt{3x+6}+C \end{align*} \]