Determine whether the following improper integrals converge or diverge:
Solution
(a) ∫∞11xdx:lim.
The limit is infinite, so \int_{1}^{\infty }\dfrac{1}{x}\,dx diverges.
(b) \int_{-\infty }^{0} e^{x}\,dx: \lim\limits_{a\, \rightarrow \,-\infty }\int_{a}^{0}e^{x}\,dx=\lim\limits_{a\,\rightarrow \,-\infty }\big[e^{x}\big]_{a}^{0}=\lim\limits_{a\,\rightarrow \,-\infty }(1-e^{a}) = 1-0=1. Since the limit exists, \int_{-\infty }^{0}e^{x}\,dx converges and equals 1.
(c) \begin{eqnarray*} \int_{\pi/2}^{\infty }\sin x \,dx: \lim\limits_{b\,\rightarrow \,\infty }\int_{\pi/2}^{b}\sin x\, dx &=& \lim\limits_{b\,\rightarrow \,\infty }\,\big[ -\cos x \big]^b_{\pi/2}\\ &=& \lim\limits_{b\,\rightarrow \,\infty } [ - \cos b +0 ] \\ &=& - \lim\limits_{b\,\rightarrow \,\infty }\cos b \end{eqnarray*}
This limit does not exist, since as b\rightarrow \infty, the value of \cos b oscillates between -1 and 1. So, \int_{\pi/2}^{\infty }\sin x \,dx diverges.