Processing math: 40%

EXAMPLE 3Integrating by Parts to Find lnxdx

Derive the formula lnxdx=xlnxx+C

Solution We use the integration by parts formula with \begin{equation*} \hbox{ }u=\ln x\qquad \hbox{and}\qquad dv=dx \end{equation*}

Then du=\frac{1}{x}\,dx\qquad {\rm and}\qquad v=\int dx=x \

Now \int \ln x\,dx= {{x}}\cdot {{\ln x}}-\int {{x}}\cdot {{\frac{1}{x}\,dx}}\,=x\,\ln x-\int dx=x\,\ln x-x+C