Derive the formula \[\bbox[5px, border:1px solid black, #F9F7ED]{ \int \ln x\,dx=x\ln x-x+C } \]
Then \[ du=\frac{1}{x}\,dx\qquad {\rm and}\qquad v=\int dx=x \ \]
Now \[ \int \ln x\,dx= {{x}}\cdot {{\ln x}}-\int {{x}}\cdot {{\frac{1}{x}\,dx}}\,=x\,\ln x-\int dx=x\,\ln x-x+C \]