Derive the formula \bbox[5px, border:1px solid black, #F9F7ED]{ \int \tan ^{-1}x\,dx=x\,\tan ^{-1}x-\dfrac{1}{2}\ln \,(1+x^{2})+C }
Solution We use the integration by parts formula with u=\tan ^{-1}x\qquad \hbox{and }\qquad dv=dx
Then du=\frac{1}{1+x^{2}}\,dx\qquad \hbox{and}\qquad v=\int dx=x and \int \tan ^{-1}x\,dx=x\cdot \tan ^{-1}x-\int \frac{x}{1+x^{2}}dx
To find the integral \int \dfrac{x}{1+x^{2}}dx, we use the substitution t=1+x^{2}. Then dt=2x\,dx, or equivalently, x~dx=\dfrac{dt}{2}. \begin{equation*} \int \frac{x}{1+x^{2}}dx=\frac{1}{2}\int \frac{dt}{t}=\frac{1}{2}\ln \vert \,t\vert =\frac{1}{2}\ln (1+x^{2}) \end{equation*}
As a result, \int \tan ^{-1} x \,dx=x \tan ^{-1}x-\dfrac{1}{2}\ln (1+x^{2})+C.