Processing math: 100%

EXAMPLE 1Finding the Integral sin5xdx

Find sin5xdx.

The method of substitution is discussed in Section 5.6, pp. 387-393.

Solution Since the exponent 5 is odd, we write sin5xdx=sin4xsinxdx, and use the identity sin2x=1cos2x. sin5xdx=sin4xsinxdx=(sin2x)2sinxdx=(1cos2x)2sinxdx=(12cos2x+cos4x)sinxdx

Now we use the substitution u=cosx. Then du=sinxdx, and sin5xdx=(12u2+u4) du=u+23u315u5+C=cosx+23cos3x15cos5x+C