Find ∫sin5xdx.
The method of substitution is discussed in Section 5.6, pp. 387-393.
Solution Since the exponent 5 is odd, we write ∫sin5xdx=∫sin4xsinxdx, and use the identity sin2x=1−cos2x. ∫sin5xdx=∫sin4xsinxdx=∫(sin2x)2sinxdx=∫(1−cos2x)2sinxdx=∫(1−2cos2x+cos4x)sinxdx
Now we use the substitution u=cosx. Then du=−sinxdx, and ∫sin5xdx=−∫(1−2u2+u4) du=−u+23u3−15u5+C=−cosx+23cos3x−15cos5x+C